Old Earth Ministries Online Dinosaur Curriculum

Free online curriculum for homeschools and private schools

From Old Earth Ministries (We Believe in an Old Earth...and God!)

NOTE:  If you found this page through a search engine, please visit the intro page first. 

 

Lesson 15 - Allosaurus, Part 2

Paleoecology

Allosaurus was the most common large theropod in the vast tract of Western American fossil-bearing rock known as the Morrison Formation, accounting for 70 to 75% of theropod specimens, and as such was at the top trophic level of the Morrison food web. The Morrison Formation is interpreted as a semiarid environment with distinct wet and dry seasons, and flat floodplains. Vegetation varied from river-lining forests of conifers, tree ferns, and ferns, to fern savannas with rare trees.

The Morrison Formation has been a rich fossil hunting ground, holding fossils of green algae, fungi, mosses, horsetails, ferns, cycads, ginkgoes, and several families of conifers. Other fossils discovered include bivalves, snails, ray-finned fishes, frogs, salamanders, turtles, sphenodonts, lizards, terrestrial and aquatic crocodylomorphans, several species of pterosaur, numerous dinosaur species, and early mammals such as docodonts, multituberculates, symmetrodonts, and triconodonts.

Allosaurus

Quick Facts

 

Length:  32 feet

Height:  13 feet at hips

Weight:  5,000 lbs

Date Range:  155 - 145 Ma, Kimmeridgian-Tithonian Age, Jurassic Period

 

Allosaurus

Mounted A. fragilis skeleton, San Diego Natural History Museum

Allosaurus quarry sites
Allosaurus Quarry Sites

The general extent of the Morrison Formation has been overlaid in yellow. Historically or otherwise notable quarries where Allosaurus remains have been found include the numbered locations:

1) “Big Al” quarry, Big Horn Co., WY.
2) Como Bluff, Albany Co., WY.
3) Garden Park/Cañon City, Fremont Co., CO.
4) Dry Mesa Quarry, Delta Co., CO.
5) Grand Junction/Fruita, Mesa Co., CO.
6) Dinosaur National Monument West, Uintah Co., UT.
7) Cleveland-Lloyd Dinosaur Quarry, Emery Co., UT.

Other locations where Allosaurus has been found are marked with a "+".

Dinosaurs such as the theropods Ceratosaurus, Ornitholestes, and Torvosaurus, the sauropods Apatosaurus, Brachiosaurus, Camarasaurus, and Diplodocus, and the ornithischians Camptosaurus, Dryosaurus, and Stegosaurus are known from the Morrison. The Late Jurassic formations of Portugal where Allosaurus is present are interpreted as having been similar to the Morrison but with a stronger marine influence. Many of the dinosaurs of the Morrison Formation are the same genera as those seen in Portuguese rocks (mainly Allosaurus, Ceratosaurus, Torvosaurus, and Apatosaurus), or have a close counterpart (Brachiosaurus and Lusotitan, Camptosaurus and Draconyx).

Allosaurus coexisted with fellow large theropods Ceratosaurus and Torvosaurus in both the United States and Portugal, The three appear to have had different ecological niches, based on anatomy and the location of fossils. Ceratosaurs and torvosaurs may have preferred to be active around waterways, and had lower, thinner bodies that would have given them an advantage in forest and underbrush terrains, whereas allosaurs were more compact, with longer legs, faster but less maneuverable, and seem to have preferred dry floodplains. Ceratosaurus, better known than Torvosaurus, differed noticeably from Allosaurus in functional anatomy by having a taller, narrower skull with large, broad teeth. Allosaurus was itself a potential food item to other carnivores, as illustrated by an Allosaurus pubic foot marked by the teeth of another theropod, probably Ceratosaurus or Torvosaurus. The location of the bone in the body (along the bottom margin of the torso and partially shielded by the legs), and the fact that it was among the most massive in the skeleton, indicates that the Allosaurus was being scavenged.

Paleobiology

Life history

The wealth of Allosaurus fossils, from nearly all ages of individuals, allows scientists to study how the animal grew and how long its lifespan may have been. Remains may reach as far back in the lifespan as eggs—crushed eggs from Colorado have been suggested as those of Allosaurus. Based on histological analysis of limb bones, the upper age limit for Allosaurus is estimated at 22 to 28 years, which is comparable to that of other large theropods like Tyrannosaurus. From the same analysis, its maximum growth appears to have been at age 15, with an estimated growth rate of about 150 kilograms (330 lb) per year.

Medullary bone tissue, also found in dinosaurs as diverse as Tyrannosaurus and Tenontosaurus, has been found in at least one Allosaurus specimen, a shin bone from the Cleveland-Lloyd Quarry. Today, this bone tissue is only formed in female birds that are laying eggs, as it is used to supply calcium to shells. Its presence in the Allosaurus individual establishes sex and shows she had reached reproductive age. By counting growth lines, it was shown that she was 10 years old at death, so sexual maturity in Allosaurus was attained well before maximum growth and size.

The discovery of a juvenile specimen with a nearly complete hindlimb shows that the legs were relatively longer in juveniles, and the lower segments of the leg (shin and foot) were relatively longer than the thigh. These differences suggest that younger Allosaurus were faster and had different hunting strategies than adults, perhaps chasing small prey as juveniles, then becoming ambush hunters of large prey upon adulthood. The thigh bone became thicker and wider during growth, and the cross-section less circular, as muscle attachments shifted, muscles became shorter, and the growth of the leg slowed. These changes imply that juvenile legs has less predictable stresses compared with adults, which would have moved with more regular forward progression.

Feeding

Paleontologists accept Allosaurus as an active predator of large animals. Sauropods seem to be likely candidates as both live prey and as objects of scavenging, based on the presence of scrapings on sauropod bones fitting allosaur teeth well and the presence of shed allosaur teeth with sauropod bones.

Allosaurus Stegosaurus
Allosaurus and Stegosaurus skeletons, Denver Museum of Nature and Science  (Picture Source

 There is dramatic evidence for allosaur attacks on Stegosaurus, including an Allosaurus tail vertebra with a partially healed puncture wound that fits a Stegosaurus tail spike, and a Stegosaurus neck plate with a U-shaped wound that correlates well with an Allosaurus snout. However, as Gregory Paul noted in 1988, Allosaurus was probably not a predator of fully grown sauropods, unless it hunted in packs, as it had a modestly sized skull and relatively small teeth, and was greatly outweighed by contemporaneous sauropods.  Another possibility is that it preferred to hunt juveniles instead of fully grown adults.

Research in the 1990s and 2000s may have found other solutions to this question. Robert T. Bakker, comparing Allosaurus to Cenozoic sabre-toothed carnivorous mammals, found similar adaptations, such as a reduction of jaw muscles and increase in neck muscles, and the ability to open the jaws extremely wide. Although Allosaurus did not have sabre teeth, Bakker suggested another mode of attack that would have used such neck and jaw adaptations: the short teeth in effect became small serrations on a saw-like cutting edge running the length of the upper jaw, which would have been driven into prey. This type of jaw would permit slashing attacks against much larger prey, with the goal of weakening the victim.

Similar conclusions were drawn by another study using finite element analysis on an
Allosaurus jaw
Allosaurus attacking, based on the theories of Bakker (1998) and Rayfield et al. (2001).  (Picture Source)
 Allosaurus skull. According to their biomechanical analysis, the skull was very strong but had a relatively small bite force. By using jaw muscles only, it could produce a bite force of 805 to 2,148 N, less than the values for alligators (13,000 N), lions (4,167 N), and leopards (2,268 N), but the skull could withstand nearly 55,500 N of vertical force against the tooth row. The authors suggested that Allosaurus used its skull like a hatchet against prey, attacking open-mouthed, slashing flesh with its teeth, and tearing it away without splintering bones, unlike Tyrannosaurus, which is thought to have been capable of damaging bones. They also suggested that the architecture of the skull could have permitted the use of different strategies against different prey; the skull was light enough to allow attacks on smaller and more agile ornithopods, but strong enough for high-impact ambush attacks against larger prey like stegosaurids and sauropods. Their interpretations were challenged by other researchers, who found no modern analogues to a hatchet attack and considered it more likely that the skull was strong to compensate for its open construction when absorbing the stresses from struggling prey. The original authors noted that Allosaurus itself has no modern equivalent, that the tooth row is well-suited to such an attack, and that articulations in the skull cited by their detractors as problematic actually helped protect the palate and lessen stress. Another possibility for handling large prey is that theropods like Allosaurus were "flesh grazers" which could take bites of flesh out of living sauropods that were sufficient to sustain the predator so it would not have needed to expend the effort to kill the prey outright. This strategy would also potentially have allowed the prey to recover and be fed upon in a similar way later. An additional suggestion notes that ornithopods were the most common available dinosaurian prey, and that allosaurs may have subdued them by using an attack similar to that of modern big cats: grasping the prey with their forelimbs, and then making multiple bites on the throat to crush the trachea. This is compatible with other evidence that the forelimbs were strong and capable of restraining prey.

Other aspects of feeding include the eyes, arms, and legs. The shape of the skull of Allosaurus limited potential binocular vision to 20° of width, slightly less than that of modern crocodilians. As with crocodilians, this may have been enough to judge prey distance and time attacks. The similar wide field of view suggests that allosaurs, like modern crocodilians, were ambush hunters. The arms, compared with those of other theropods, were suited for both grasping prey at a distance or clutching it close, and the articulation of the claws suggests that they could have been used to hook things. Finally, the top speed of Allosaurus has been estimated at 30 to 55 kilometers per hour (19 to 34 miles per hour).

Social behavior

Allosaurus has long been regarded in the semitechnical and popular literature as an animal that preyed on sauropods and other large dinosaurs by hunting in groups. Robert T. Bakker has extended social behavior to parental care, and has interpreted shed allosaur teeth and chewed bones of large prey animals as evidence that adult allosaurs brought food to lairs for their young to eat until they were grown, and prevented other carnivores from scavenging on the food. However, there is actually little evidence of gregarious behavior in theropods, and social interactions with members of the same species would have included antagonistic encounters, as shown by injuries to gastralia and bite wounds to skulls (the pathologic lower jaw named Labrosaurus ferox is one such possible example). Such head-biting may have been a way to establish dominance in a pack or to settle territorial disputes.

Although Allosaurus may have hunted in packs, it has recently been argued that Allosaurus and other theropods had largely aggressive instead of cooperative interactions with other members of their own species. The study in question noted that cooperative hunting of prey much larger than an individual predator, as is commonly inferred for theropod dinosaurs, is rare among vertebrates in general, and modern diapsid carnivores (including lizards, crocodiles, and birds) very rarely cooperate to hunt in such a way. Instead, they are typically territorial and will kill and cannibalize intruders of the same species, and will also do the same to smaller individuals that attempt to eat before they do when aggregated at feeding sites. According to this interpretation, the accumulation of remains of multiple Allosaurus individuals at the same site, e.g. in the Cleveland-Lloyd quarry, are not due to pack hunting, but to the fact that Allosaurus individuals were drawn together to feed on other disabled or dead allosaurs, and were sometimes killed in the process. This could explain the high proportion of juvenile and subadult allosaurs present, as juveniles and subadults are disproportionally killed at modern group feeding sites of animals like crocodiles and komodo dragons. The same interpretation applies to Bakker's lair sites. There is some evidence for cannibalism in Allosaurus, including Allosaurus shed teeth found among rib fragments, possible tooth marks on a shoulder blade, and cannibalized allosaur skeletons among the bones at Bakker's lair sites.

Brain and senses

The brain of Allosaurus, as interpreted from spiral CT scanning of an endocast, was more consistent with crocodilian brains than those of the other living archosaurs, birds. The structure of the vestibular apparatus indicates that the skull was held nearly horizontal, as opposed to strongly tipped up or down. The structure of the inner ear was like that of a crocodilian, and so Allosaurus probably could have heard lower frequencies best, and would have had trouble with subtle sounds. The olfactory bulbs were large and seem to have been well suited for detecting odors, although the area for evaluating smells was relatively small.

In popular culture

Allosaurus Model
Allosaurus model in Bałtów, Poland.  (Picture Source

Along with Tyrannosaurus, Allosaurus has come to represent the quintessential large, carnivorous dinosaur in popular culture. It is a common dinosaur in museums, due in particular to the excavations at the Cleveland Lloyd Dinosaur Quarry; by 1976, as a result of cooperative operations, 38 museums in eight countries on three continents had Cleveland-Lloyd allosaur material or casts. Allosaurus is the official state fossil of Utah.

Allosaurus has been depicted in popular culture since the early years of the 20th century. It is top predator in both Arthur Conan Doyle's 1912 novel, The Lost World, and its 1925 film adaptation, the first full-length motion picture to feature dinosaurs. It later became the starring dinosaur of the 1956 film The Beast of Hollow Mountain, and the 1969 film The Valley of Gwangi, two genre combinations of living dinosaurs with Westerns. In The Valley of Gwangi, Gwangi is billed as an Allosaurus, although Ray Harryhausen based his model for the creature on Charles R. Knight's depiction of a Tyrannosaurus. Harryhausen sometimes confuses the two, stating in a DVD interview "They're both meat eaters, they're both tyrants... one was just a bit larger than the other." Allosaurus also made appearances in the Hammer 1966 remake One Million Years B.C. and the 1975 film adaptation of The Land that Time Forgot. In nonfictional presentations, Allosaurus appears in the second and fifth episodes of the BBC television series Walking with Dinosaurs, Jurassic Fight Club, and the Walking with Dinosaurs special The Ballad of Big Al which chronicles the life of the Allosaurus specimen nicknamed "Big Al".

Return to the Old Earth Ministries Online Dinosaur Curriculum homepage.

horizontal rule

Shopping

     Many fine reproductions of Allosaurus teeth, claws, skulls, and even complete skeletons, are available from several companies.  Please click the links below to visit their websites.

Bay State Replicas - Three skull varieties, complete hand, complete arm, complete foot, complete leg, humerus, jaw w/teeth, foot claw, finger claw, 1st, 2nd, and 3rd digit fingers

Black Hills Institute - Complete skeleton, skull with neck, leg, femur, skull, reproduction head (fleshed), tooth (in matrix)